

Das Energiesystem der Zukunft, was sich für uns alle ändern wird

Vortrag am 29.02.2024 um 19:00 Forum altes Rathaus Borken, FARB

Prof. Dr.-Ing. Olaf Goebel Hochschule Hamm-Lippstadt

Worum geht es?

- Deutschland möchte bis 2045 "klimaneutral" sein.
- D.h. bis dahin sollen keine fossilen Brennstoffe mehr verwendet werden.
- D.h. bis dahin sollen wir uns zu 100% mit Erneuerbaren Energien (REN) versorgen.
- 2045, das ist in 21 Jahren. Das ist so lange wie von 2003 bis heute. Das ist nicht viel Zeit!
- Wenn wir damit ernst machen, dann stehen wir vor dem größten Umbruch unserer Volkswirtschaft seit Beginn der industriellen Revolution.
- Geht das überhaupt? (Das ist das Thema dieses Vortrages)

Definition: Primär-, End-, Nutzenergie

Deutschland 2019 (Daten: AGEB)

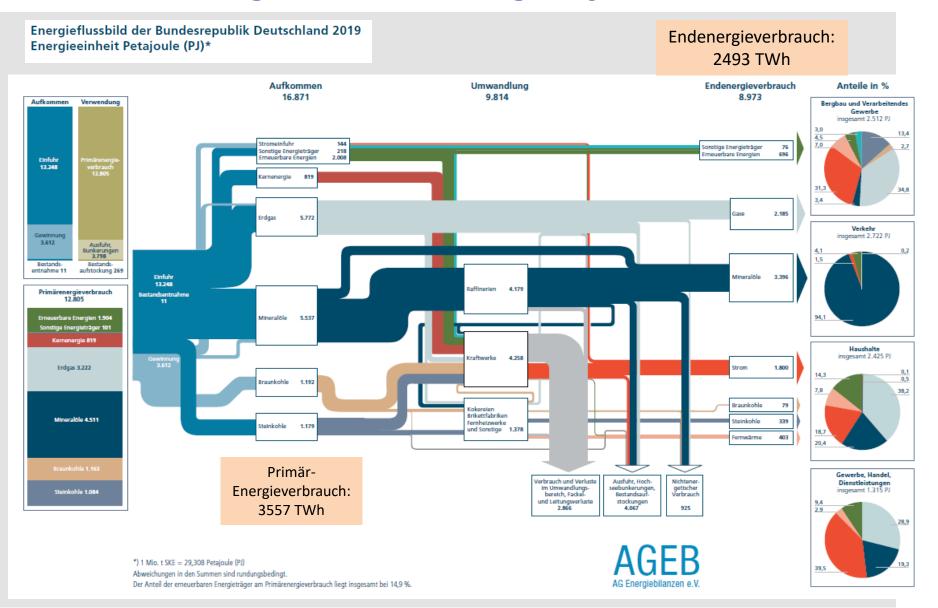
Primärenergieverbrauch: 3557 TWh

Primärenergie = Rohform der Energie, so wie sie aus der Erde kommt bzw. importiert wird, z.B. Kohle, Öl, Gas, Uran

30 % Umwandlungsverluste z.B. im Kraftwerk oder Raffinerie

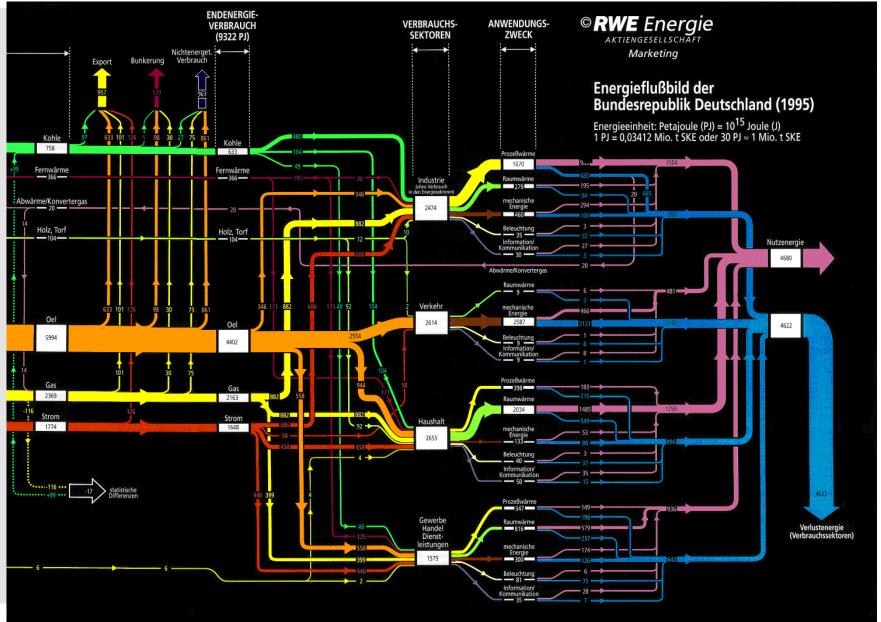
Endenergieverbrauch:
2492 TWh
(70 % vom PEV)

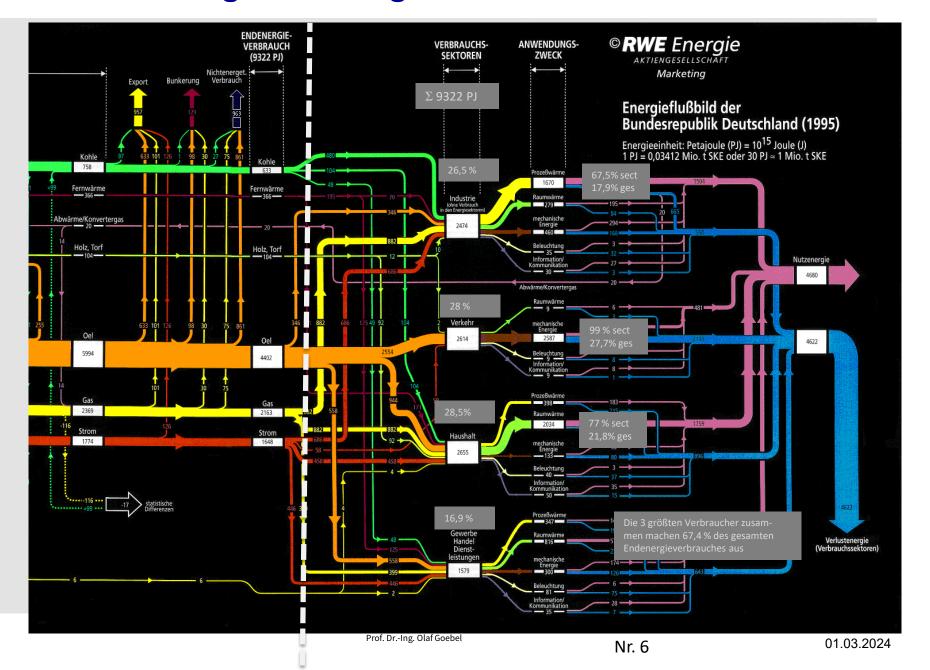
Endenergie = Die Form der Energie, so wie sie vom Endverbraucher bezogen wird, z.B. Benzin, Heizöl, Gas, Strom


45 % Umwandlungsverluste z.B. im Motor oder Heizkessel

Nutzenergieverbrauch: 1370 TWh (55 % vom EEV) (38,5 % vom PEV)

Nutzenergie = Die Form der Energie, die der Nutzer eigentlich haben möchte, z.B. Bewegung des Autos, Licht, Wärme im Haus


Blick aufs gesamte Energiesystem


Blick aufs gesamte Energiesystem


Prof. Dr.-Ing. Olaf Goebel

Das RWE Energieflussdiagramm 1995: Verbrauchssektoren

Endenergie => Nutzenergie

Eingespart: 494 TWh Endenergie (20% der heutigen Endenergie)

Quelle AGEB, Deutschland 2019, Annahme Verkehr (95% des EE-Bedarfs für Bewegungsenergie)

Endenergie => Nutzenergie

Heute, Gas- und Ölheizungen, private Haushalte

Endenergie, Raumheizung: 505 TWh

Kesselwirkungsgrad: 100% Nutzenergie, Raumheizung: 505 TWh

Wärmepumpen-Heizungen, private Haushalte

Endenergie, Raumheizung: 202 TWh

JAZ: 2,5 (250%)

Nutzenergie, Raumheizung: 505 TWh

- Eingespart: 303 TWh Endenergie (12% der heutigen Endenergie)
- Oft nicht berücksichtigt: Auch der Nutzenergiebedarf kann sinken!

Quelle AGEB, Deutschland 2019, Annahme Haushalte (75% des EE-Bedarfs für Raumwärme)

Definition: Primär-, End-, Nutzenergie

Deutschland 2045

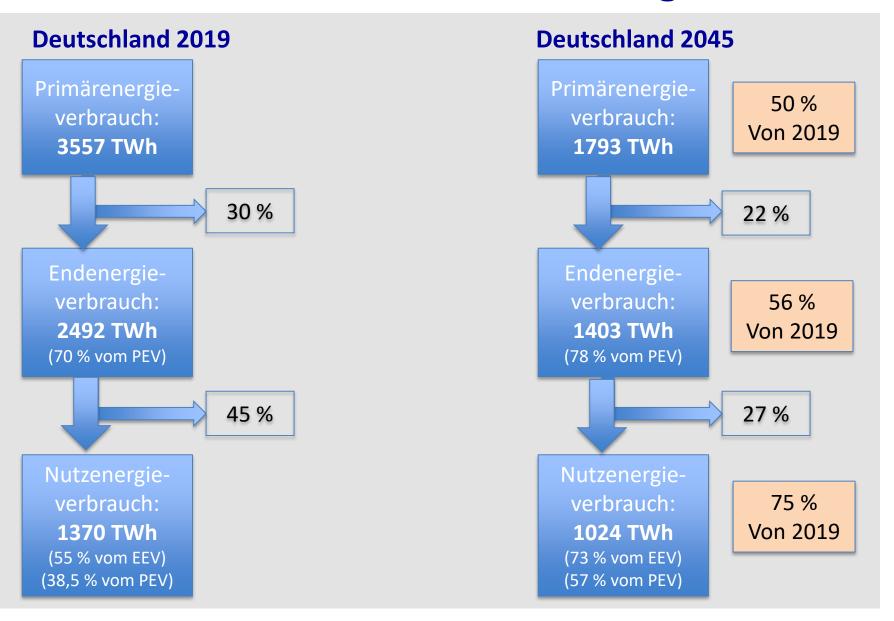
Primärenergieverbrauch: 1793 TWh

Primärenergie = 50 % weniger als 2019
Effizienzverbesserung durch:
Kaum noch thermische Kraftwerke

22 % Umwandlungsverluste z.B. Elektrolyseur und Kraftwerk

Endenergieverbrauch:
1403 TWh
(78 % vom PEV)

Endenergie = 44 % weniger als 2019, Effizienzverbesserung durch: E-Mobilität und Wärmepumpen

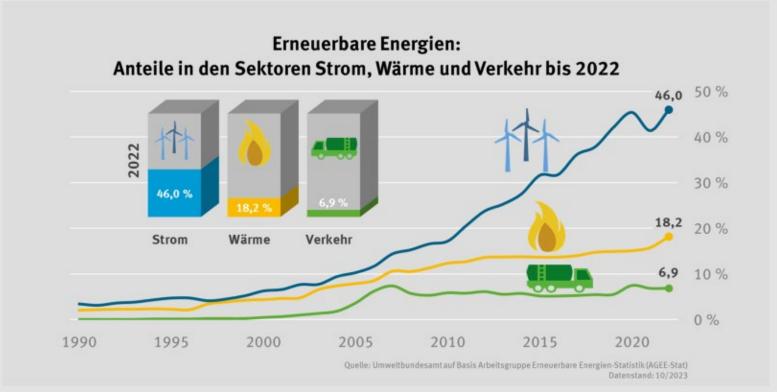

27 % Umwandlungsverluste z.B. im Motor oder Heizkessel

Nutzenergieverbrauch: 1024 TWh (73 % vom EEV) (57 % vom PEV)

Nutzenergie = 25 % weniger als 2019, durch: Bessere Wärmedämmung, weniger Verkehr (z.B. mehr regionale Produkte)

Definition: Primär-, End-, Nutzenergie

Sektorenkopplung

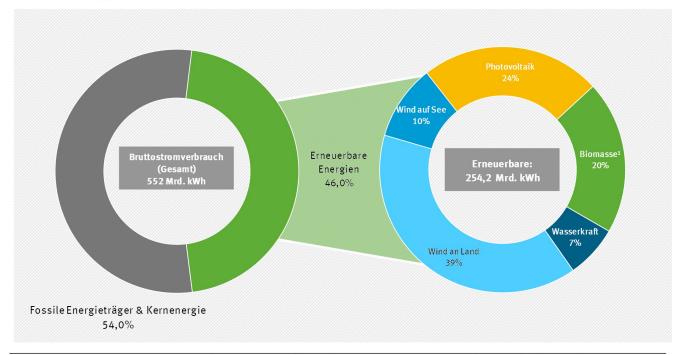


Energiewende Zwischenbilanz 2022:

Nettostromerzeugung: 46 % REN (steigend) (2023 die 50% Marke geknackt)

Verkehrssektor: 6,9 % REN (stagnierend)

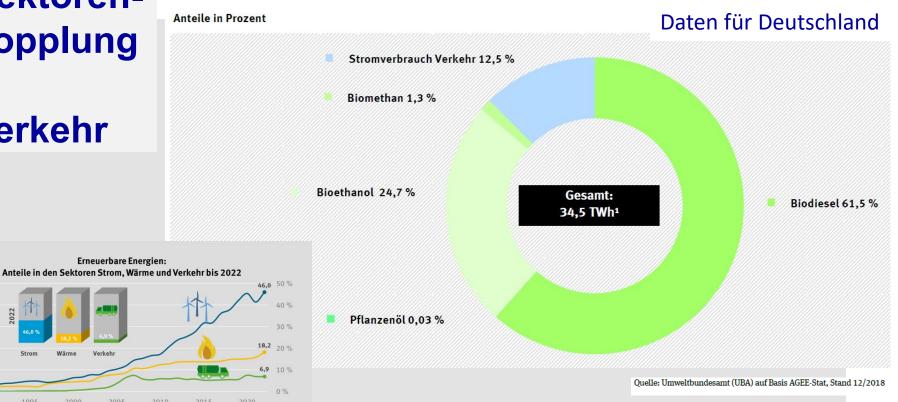
Wärmesektor: 18,2 % REN (stagnierend)


• Strom ist nicht alles! Nur ca. 1/3 des Primärenergieaufkommens geht in die Stromerzeugung

Sektorenkopplung

Strom

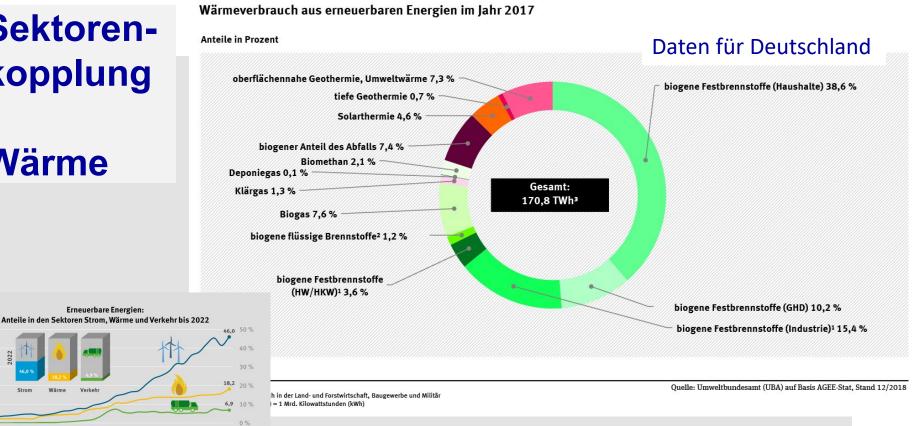
Stromerzeugung aus Geothermie aufgrund geringer Mengen nicht dargestellt (0,2 TWh) ¹ gasförmige, flüssige und feste Biomasse inkl. biogenem Abfall


Quelle: Umweltbundesamt (UBA) auf Basis AGEE-Stat Stand 09/2023

- Der heutige REN-Anteil im Stromsektor besteht im Wesentlichen aus Sonne (PV)
 und Wind und Biomasse.
- Signifikantes Steigerungen sind nur noch im Bereich PV und Wind realisierbar. Aber diese beiden Technologien liefern leider nur fluktuierenden Strom.

1995

Verbrauch erneuerbarer Energien im Verkehrssektor im Jahr 2017



- Der heutige REN-Anteil im Verkehrssektor besteht im Wesentlichen aus Beimischung von biomassebasierten Kraftstoffen zu Benzin und Diesel. Dieser Anteil lässt sich nicht weiter steigern (Stichwort "Teller-Tank-Diskussion").
- Ein signifikantes Eindringen der REN in den Verkehrssektor wird nur gelingen durch Elektromobilität.

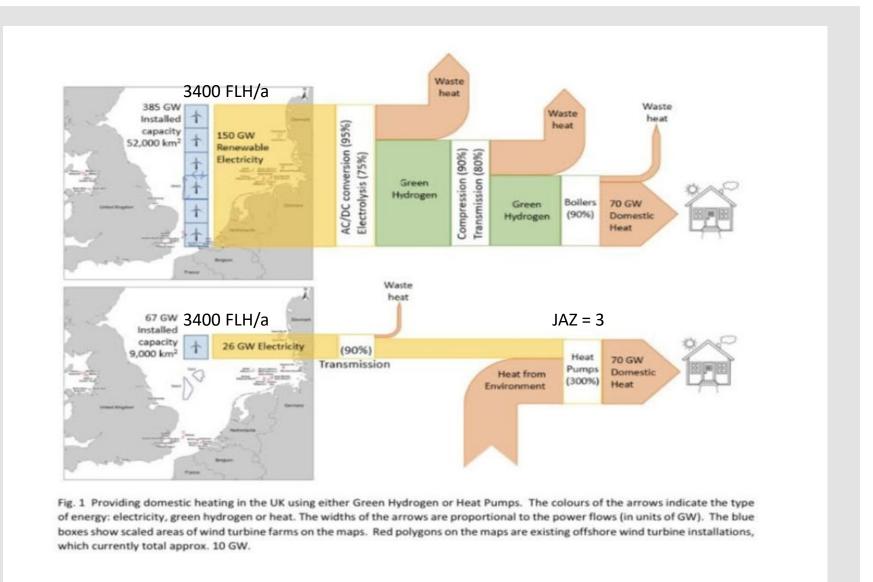
Sektorenkopplung

Erneuerbare Energien:

Wärme

- Der heutige REN-Anteil im Wärmesektor besteht im Wesentlichen aus der Verbrennung von Biomasse (Holz, Holzpellets, Biogas). Auch dieser Anteil lässt sich in Deutschland nicht mehr wesentlich steigern (industrielle Waldnutzung vs. Naturschutz).
- Ein signifikantes Eindringen der REN in den Wärmesektor wird nur gelingen durch Power to Heat (P2H) und zwar mit* und ohne* Wärmepumpen (WP).

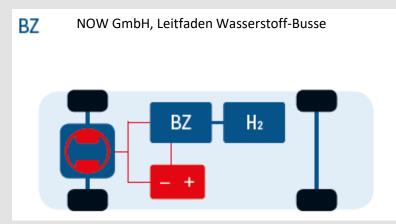
^{*} mit WP bei Grundlastanwendungen *und ohne WP bei Anwendungen zur Verwertung von Überschussstrom


Und Wasserstoff?

- Wenn man aus dem REN Strom erst Wasserstoff macht, und dann wieder Strom (in der Brennstoffzelle im Auto), dann bleibt nur noch 40% des vorher vorhandenen Stroms übrig.
- Umwandlung Endenergie => Nutzenergie ist so schlecht wie heute.
- Kein Effizienzgewinn
- Wenn man statt mit einer Wärmepumpe mit Wasserstoff
 heizt (so wie man heute Erdgas verheizt), dann hat man
 nicht den Strom x 2,5 als Energie im Haus, sondern nur den
 Strom x 0,6 (Wirkungsgrad der Elektrolyse)
- 2,5 zu 0,6 = 4, d.h. man braucht 4 mal mehr Strom zum Heizen!
- **Zwischenfazit:** Die Elektrifizierung bei Auto und Heizung ist nicht eine Frage der *persönlichen Vorlieben*, sondern sie ist aus der Systemsicht geboten.

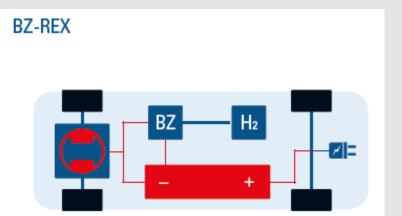
Vgl. Wasserstoff-Heizung vs. WP

Und Wasserstoff?


Wofür also Wasserstoff?

- Batterien sind sehr schwer und daher nicht in allen Fahrzeugkategorien einsetzbar.
- Wasserstoff könnte sich durchsetzen bei:
 - LKW und Bussen im Fernverkehr (nicht im Nahverkehr)
 - Hochseeschiffen
 - Langstreckenflugzeugen
- Außerdem wird Wasserstoff gebraucht für:
 - Energiespeicherung (saisonal)
 - Als Rohstoff in der Industrie (heute schon 57 TWh)
 - ➤ Für die CO₂-freie Stahlerzeugung

Nutzung von Wasserstoff in Bussen


Entwicklungstendenz: Hybrid mit Batterie und H₂-BZ als Range Extender, REX

		BZ	BZ-REX
Solobus 12 m	HV-Batterie	30 kWh	250 kWh
	H2-Tank	40 kg H ₂	15 kg H ₂
	Brennstoffzelle	100 kW	30 kW

Hecke, 2018, Van Hool, 2018, thinkstep & Prognos, 2017, Witkowski, 2017

 Der vielleicht wichtigste Vorteil des BZ-REX gegenüber reinen E-Bus: Bei Stromknappheit kann auf H₂ gefahren werden (netzdienlich)

- Energieeffizienter als reiner H₂
 Brennstoffzellenbus
- Kleinere BZ als reiner H₂-Bus
- Kleinere Batterie als reiner E-Bus.
- => Batterie leichter, kleiner und billiger.
- Niedrigere Life Cycle Cost als reiner E- oder reiner H₂-Bus.

Apropos Batterie – Hybrid

- Der REX muss nicht unbedingt mit Wasserstoff betrieben werden. Alternativen:
- Biokraftstoffe
- E-Fuels (Brennstoffe aus Wasserstoff)
 - Diese haben bei der Herstellung noch mehr Verluste als Wasserstoff, sind aber leichter zu handhaben.
- Biokraftstoffe: Teller-Tank Diskussion und Energieeffizienz
- ➤ Um ein E-Auto die in Deutschland üblichen 14 000 km p.a. zu bewegen, benötigt man eine PV Anlage von 2,8 kWp, und die benötigt eine Fläche von 14 m². (Flächenbelegung von 60% => 23,3 m² Ackerfläche)
- ➤ Um einen Verbrenner (6 L / 100 km) mit Biodiesel zu versorgen benötigt man einen Acker von 1 260 m² (die gut 50-fache Fläche).
- Trotzdem kann Biokraftstoff als Kraftstoff für den REX sinnvoll sein.
 Statt heute 7% für alle beizumischen in Zukunft gezielt für REX.

Wasserstoff wird gebraucht!

Wenn eine Industrie ganz ohne fossile Energien auskommen soll, dann benötigt sie Wasserstoff aus diesen Gründen: (es ist eine "push – pull – Situation")

- Beim weiteren Ausbau von Wind und PV wird es zu Stromüberschüssen kommen. Diese müssen genutzt werden! (das ist der push)
- Die Energie muss von Zeiten mit Überschussstrom (windig und sonnig) gespeichert werden, damit sie an Tagen mit Stromknappheit (Dunkelflaute) zur Verfügung steht. (das ist der pull)
- Das geht nur mit Wasserstoff.

Wasserstoff für was?

Es ergibt sich die Frage, wie die im Wasserstoff gespeicherte Energie am besten genutzt wird.

- 1. Stoffliche Verwertung?
- Ja! Weil ohne Konkurrenz (Wenn ein Prozess Wasserstoff braucht, dann braucht er Wasserstoff.)
- 2. Stromspeicher für Dunkelflaute?
- Ja! Weil alle anderen Speicher für Langzeitspeicherung zu teuer sind.
- Aber erst, wenn H₂ nur noch grün hergestellt wird.
- 3. Im Verkehr?
- Noch nicht klar! Warum? Weil es durch die batterie-betriebene E-Mobilität eine starke Alternative gibt.
- Nur bei Flugzeugen und Hochseeschiffen ist Batteriebetrieb keine Alternative.

Primärenergiebereitstellung (PEB) 2045

Die Tabelle zeigt, wie die heute bestehende Lücke bei der Bereitstellung der Primärenergie (PE) durch PV und Wind geschlossen werden könnte.

- Die Ausbau-Faktoren PV bzw.
 Wind sagen aus, um welchen
 Faktor die heute (2020)
 bestehenden Installationen
 erhöht werden müssten, um die
 Lücke von 1300 TWh zu
 schließen.
- Beispiel: Bei Verdreifachung der Windinstallation müsste die PV-Installation um den Faktor 15 gesteigert werden.

Annahmen:

 Kein weiterer Ausbau von Biomasse (Teller-Tank) und Wasserskraft (Naturschutz)

PV-Wind	Balanc	e für	PEB von 2	2045		
				PV	Wind	
				Ausbau-	Ausbau	
				Faktor	-Faktor	Lücke PE
PEB 2045	1800	TWh		0	10,00	1300
REN PE heute	500	TWh		1	9,54	1300
Lücke PE	1300	TWh		2	9,08	1300
Wind 2022	130	TWh		3	8,62	1300
PV 2022	60	TWh		4	8,15	1300
				5	7,69	1300
				6	7,23	1300
				7	6,77	1300
				8	6,31	1300
				9	5,85	1300
				10	5,38	1300
				11	4,92	1300
				12	4,46	1300
				13	4,00	1300
				14	3,54	1300
				15	3,08	1300
				16	2,62	1300
				17	2,15	1300

Daten 2010, Quelle: Erneuerbare Energien 2010, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit.

Wachstum Stromerzeugung Wind: https://www.dlr.de/dlr/Portaldata/1/Resources/documents/ee in zahlen 2010 bf.pdf

• 2010: 37,4 TWh, 2020: 130 TWh, Wachstum: 9,26 TWh/a ($\cong 4,2$ GW/a @ 2200 FLH/a)

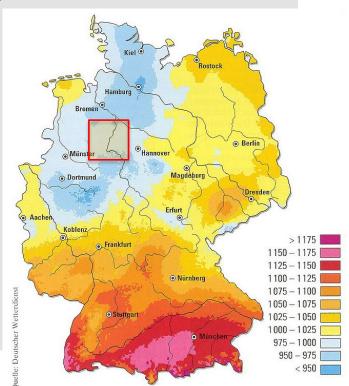
Wachstum Stromerzeugung PV:

• 2010: 12,0 TWh, 2020: 47,8 TWh, Wachstum: 3,58 TWh/a (\cong 3,58 GW/a @ 1000 FLH/a)

Wachstum Stromerzeugung PV und Wind gemeinsam:

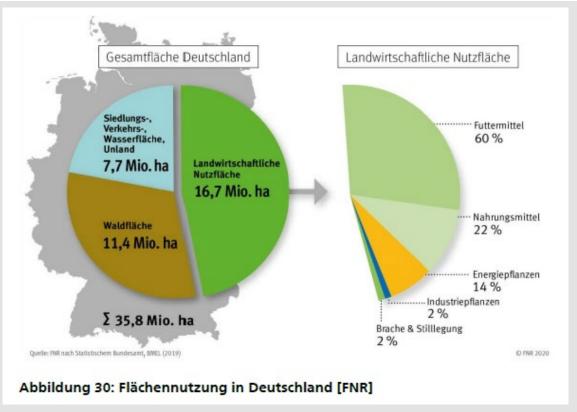
• 2010: 49,4 TWh, 2020: 177,8 TWh, **Wachstum: 12,84 TWh/a**

- > D.h. bei **gleichem Wachstum wie heute** dauert es **über 100 Jahre**, bis die Lücke von 1300 TWh geschlossen sein wird.
- Sie soll aber bis 2045 (in 21 Jahren) geschlossen werden.
 - => Ausbautempo mit nahezu dem Faktor 5 erforderlich
- Oder: Ein Teil der Energie muss importiert werden (als Strom oder Wasserstoff)
- Oder: Der PEB muss noch weiter gesenkt werden



Flächenbedarf für neu zu installierende PV Kapazität auf Freifläche (Stand heute x 15):

- $GHI_{Deutschland} = 1000 \text{ kWh/(m}^2 \text{ a)} => 1 \text{ TWh/(km}^2 \text{ a)}$ (GHI = Global Normal Irradiation)
- $\eta_{PV} = 20 \%$, Flächenbelegung = $50\% = \eta_{PV-Freiflächenanlage} = 10\%$ (bezogen auf Landfläche)
 - Ertrag PV_{Freifläche} = 0,1 TWh/(km² a)
 - ➤ Daumenwert: 1 TWh/a \cong 1 GW_P (@ 1000 FLH/a) => 0,1 TWh/a \cong 0,1 GW
- Wachstum PV von 60 GW auf 900 GW (ver-15-fachung) d.h. 840 GW Zubau bis 2045
- 8400 km² PV Fläche erforderlich, entspr. Quadrat mit 91,6 km Kantenlänge
- > 8400 km² entspr. 2,35% der Fläche der BRD
- bzw. 4,7 % der landw. genutzten Fläche der BRD
- Landkarte: rotes Quadrat mit a = 91,6 km


Aber:

 Es muss nicht alles auf der Freifläche installiert werden!

- Die rechts zitierte Studie sieht auf den Gebäuden der BRD ein Potential von 1000 GW_P
- (nur Flächen berücksichtigt mit Einstrahlung > 500 kWh/m² a)
- D.h. ein Ausweichen auf die Freifläche wäre gar nicht nötig.
- Aber: Freiflächenanlagen sind kostengünstiger.

Fraunhofer ISE: Aktuelle Fakten zur Photovoltaik in Deutschland 2022, www.pv-fakten.de

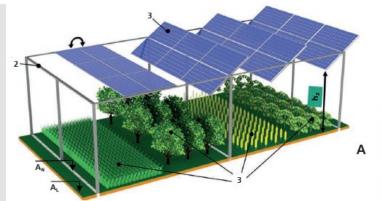
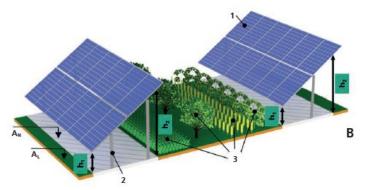
- Zusätzlich brächte eine PV-Überdachung von bestehenden großen **Parkplätzen** weitere **59 GW**_P.
- Agri-PV bietet Potential für 2 900 GW_p, also gut 3 x mehr als benötigt (FH-ISE, Seite 36)

- Agri-PV beeinträchtigt die Landwirtschaft kaum.
- Einige Pflanzen gedeihen sogar besser im Halbschatten.
- Senkrechte Module bieten Windschutz und hohe Stromerträge im Winter.

Fraunhofer ISE: Agri-Photovoltaik: Chance für Landwirtschaft und Energiewende, Ein Leitfaden für Deutschland, Stand April 2022

Tab. 01: Überblick über Kategorien und Nutzungsformen der DIN SPEC 91434

Agri-PV-Systeme	Nutzung	Beispiele		
Kategorie I:	1A: Dauerkulturen und mehrjährige Kulturen	Obstbau, Beerenobstbau, Weinbau, Hopfen		
Bodennahe Aufständerung < 2,1 m	18: Einjährige und überjährige Kulturen	Ackerkulturen, Gemüsekulturen, Wechselgrünland, Ackerfutter		
Bewirtschaftung unter der Agri-PV-Anlage	1C: Dauergrünland mit Schnittnutzung	Intensives Wirtschaftsgrünland, extensiv genutztes Grünland		
(Bild 1)	1D: Dauergrünland mit Weidenutzung	Dauerweide, Portionsweide (zum Beispiel Rinder, Geflügel, Schafe, Schweine und Ziegen)		
Kategorie II:	2A: Dauerkulturen und mehrjährige Kulturen	Obstbau, Beerenobstbau, Weinbau, Hopfen		
Bodennahe Aufständerung < 2,1 m	18: Einjährige und überjährige Kulturen	Ackerkulturen, Gemüsekulturen, Wechselgrünland, Ackerfutter		
Bewirtschaftung zwischen den Agri-PV-Anlagenreihen	1C: Dauergrünland mit Schnittnutzung	Intensives Wirtschaftsgrünland, extensiv genutztes Grünland		
(Bild 2/3)	2D: Dauergrünland mit Weidenutzung	Dauerweide, Portionsweide (zum Beispiel Rinder, Geflügel, Schafe, Schweine und Ziegen)		

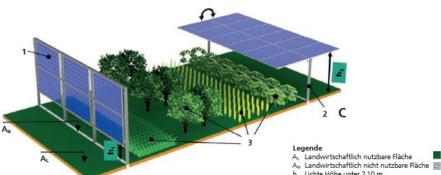

Abb 10- Illustration der Kategorien und Nutzungsformen der DIN SPEC 91434. @ Fraunhofer ISE

Bild A: Darstellung zu Kategorie I;

Bild B: Darstellung zu Kategorie II, Variante 1;

Bild C: Darstellung zu Kategorie II, Varianten 1 und 2.

Landwirtschaftlich nutzbare Fläche

Lichte Höhe unter 2,10 m

Lichte Höhe über 2,10 m

Beispiele zu Solarmodulen

Aufständerung

Beispiele lamdwirtschaftlicher Kulturen

Flächenbedarf für neu zu installierende Wind Kapazität, onshore (Stand 2021 (56 GW) x 3, d.h. Zubau von 168 GW)

- P_{el} pro Rotorfläche am Beispiel der Enercon E-138 EP3 (Binnenland-WKA):
- $P_{el} = 4.2 \text{ MW, } D_{Rotor} = 138,25 \text{ m} => A_{Rotor} = 15 011 \text{ m}^2 => P/A = 280 \text{ W/m}^2_{Rotorfläche}$
- Bei Raster-Abstand von 4 x D => Flächenbedarf je WKA = (553m)² = 305 809 m²
- => 13,7 W/ m^2 = 13,7 MW/ km^2 => 12 262,8 km² für 168 GW
- Entspricht 3,4 % der Fläche der BRD (etwas mehr als für 900 GW_{PV})
- Das Land im Windpark kann aber weiterhin landwirtschaftlich genutzt werden.
- Auch gleichzeitige Nutzung für PV Freiflächenanlagen möglich

Fazit:

- Die Erzeugung von 1800 TWh/a in Deutschland mit dem heutigen Bestand an Wasserkraft und Biomasse und Schließen der Lücke von 1300 TWh/a (Stand 2022) durch PV und Wind ist möglich.
- Außerdem besteht die Möglichkeit, Energie zu importieren (Strom und/oder Wasserstoff)

Und jetzt?

- Jetzt brauchen wir "nur noch" Die Handwerker*innen und Ingenieur*innen, die das alles umsetzen!
- Daher: Werben Sie für die Berufe in der Energietechnik (handwerklich und akademisch).
- Alles Reden bringt nichts, wenn wir es nicht umsetzen!
- An der HSHL kann man Energietechnik studieren:

https://www.hshl.de/studieren/studiengaenge/bachelorstudiengaenge/energietechnik-und-ressourcenoptimierung/

Vielen Dank für Ihr Interesse

Dieser Vortrag ist in ähnlicher Form auch auf youtube verfügbar: https://www.youtube.com/watch?v=VvnmBOLuvGw
youtube-Kanal der HSHL:

https://www.youtube.com/user/hshammlippstadt/videos?app=desktop

Prof. Dr.-Ing. Olaf Goebel